Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Obstet Gynecol Scand ; 103(5): 897-906, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38339766

RESUMO

INTRODUCTION: This study aimed to assess the visibility of the indusium griseum (IG) in magnetic resonance (MR) scans of the human fetal brain and to evaluate its reliability as an imaging biomarker of the normality of brain midline development. MATERIAL AND METHODS: The retrospective observational study encompassed T2-w 3T MR images from 90 post-mortem fetal brains and immunohistochemical sections from 41 fetal brains (16-40 gestational weeks) without cerebral pathology. Three raters independently inspected and evaluated the visibility of IG in post-mortem and in vivo MR scans. Weighted kappa statistics and regression analysis were used to determine inter- and intra-rater agreement and the type and strength of the association of IG visibility with gestational age. RESULTS: The visibility of the IG was the highest between the 25 and 30 gestational week period, with a very good inter-rater variability (kappa 0.623-0.709) and excellent intra-rater variability (kappa 0.81-0.93). The immunochemical analysis of the histoarchitecture of IG discloses the expression of highly hydrated extracellular molecules in IG as the substrate of higher signal intensity and best visibility of IG during the mid-fetal period. CONCLUSIONS: The knowledge of developmental brain histology and fetal age allows us to predict the IG-visibility in magnetic resonance imaging (MRI) and use it as a biomarker to evaluate the morphogenesis of the brain midline. As a biomarker, IG is significant for post-mortem pathological examination by MRI. Therefore, in the clinical in vivo imaging examination, IG should be anticipated when an assessment of the brain midline structures is needed in mid-gestation, including corpus callosum thickness measurements.


Assuntos
Corpo Caloso , Imageamento por Ressonância Magnética , Feminino , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Lobo Límbico , Espectroscopia de Ressonância Magnética , Biomarcadores
2.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950874

RESUMO

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.


Assuntos
Substância Branca , Animais , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiologia , Tálamo/diagnóstico por imagem , Macaca mulatta , Mamíferos
3.
Eur Radiol ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019312

RESUMO

OBJECTIVES: To investigate the advantage of T1-weighted fast fluid-attenuated inversion-recovery MRI sequence without (T1-FFLAIR) and with compressed sensing technology (T1-FFLAIR-CS), which shows improved T1-weighted contrast, over standard used T1-weighted fast field echo (T1-FFE) sequence for the assessment of fetal myelination. MATERIALS AND METHODS: This retrospective single-center study included 115 consecutive fetal brain MRI examinations (63 axial and 76 coronal, mean gestational age (GA) 28.56 ± 5.23 weeks, range 19-39 weeks). Two raters, blinded to GA, qualitatively assessed a fetal myelin total score (MTS) on each T1-weighted sequence at five brain regions (medulla oblongata, pons, mesencephalon, thalamus, central region). One rater performed region-of-interest quantitative analysis (n = 61) at the same five brain regions. Pearson correlation analysis was applied for correlation of MTS and of the signal intensity ratios (relative to muscle) with GA on each T1-weighted sequence. Fetal MRI-based results were compared with myelination patterns of postmortem fetal human brains (n = 46; GA 18 to 42), processed by histological and immunohistochemical analysis. RESULTS: MTS positively correlated with GA on all three sequences (all r between 0.802 and 0.908). The signal intensity ratios measured at the five brain regions correlated best with GA on T1-FFLAIR (r between 0.583 and 0.785). T1-FFLAIR demonstrated significantly better correlations with GA than T1-FFE for both qualitative and quantitative analysis (all p < 0.05). Furthermore, T1-FFLAIR enabled the best visualization of myelinated brain structures when compared to histology. CONCLUSION: T1-FFLAIR outperforms the standard T1-FFE sequence in the visualization of fetal brain myelination, as demonstrated by qualitative and quantitative methods. CLINICAL RELEVANCE STATEMENT: T1-weighted fast fluid-attenuated inversion-recovery sequence (T1-FFLAIR) provided best visualization and quantification of myelination in utero that, in addition to the relatively short acquisition time, makes feasible its routine application in fetal MRI for the assessment of brain myelination. KEY POINTS: • So far, the assessment of fetal myelination in utero was limited due to the insufficient contrast. • T1-weighted fast fluid-attenuated inversion-recovery sequence allows a qualitative and quantitative assessment of fetal brain myelination. • T1-weighted fast fluid-attenuated inversion-recovery sequence outperforms the standard used T1-weighted sequence for visualization and quantification of myelination in utero.

4.
Neurooncol Adv ; 5(1): vdad136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024240

RESUMO

Background: The prognostic roles of clinical and laboratory markers have been exploited to model risk in patients with primary CNS lymphoma, but these approaches do not fully explain the observed variation in outcome. To date, neuroimaging or molecular information is not used. The aim of this study was to determine the utility of radiomic features to capture clinically relevant phenotypes, and to link those to molecular profiles for enhanced risk stratification. Methods: In this retrospective study, we investigated 133 patients across 9 sites in Austria (2005-2018) and an external validation site in South Korea (44 patients, 2013-2016). We used T1-weighted contrast-enhanced MRI and an L1-norm regularized Cox proportional hazard model to derive a radiomic risk score. We integrated radiomic features with DNA methylation profiles using machine learning-based prediction, and validated the most relevant biological associations in tissues and cell lines. Results: The radiomic risk score, consisting of 20 mostly textural features, was a strong and independent predictor of survival (multivariate hazard ratio = 6.56 [3.64-11.81]) that remained valid in the external validation cohort. Radiomic features captured gene regulatory differences such as in BCL6 binding activity, which was put forth as testable treatment target for a subset of patients. Conclusions: The radiomic risk score was a robust and complementary predictor of survival and reflected characteristics in underlying DNA methylation patterns. Leveraging imaging phenotypes to assess risk and inform epigenetic treatment targets provides a concept on which to advance prognostic modeling and precision therapy for this aggressive cancer.

5.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398056

RESUMO

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported an additional commissural pathway in rodents, termed the thalamic commissures (TCs), as another interhemispheric axonal fiber pathway that connects cortex to the contralateral thalamus. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted magnetic resonance imaging, viral axonal tracing, and functional MRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as an important fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.

7.
Lancet Reg Health Eur ; 26: 100587, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36713638

RESUMO

Background: There are known complications for fetuses after infection with SARS-CoV-2 during pregnancy. However, previous studies of SARS-CoV-2 in pregnancy have largely been limited to histopathologic studies of placentas and prenatal studies on the effects of different SARS-CoV-2 variants are scarce to date. To examine the effects of SARS-CoV-2 variants on the placenta and fetus, we investigated fetal and extra-fetal structures using prenatal MRI. Methods: For this prospective case-control study, two obstetric centers consecutively referred pregnant women for prenatal MRI after confirmed SARS-CoV-2 infection. Thirty-eight prenatal MRI examinations were included after confirmed infection with SARS-CoV-2 and matched 1:1 with 38 control cases with respect to sex, MRI field strength, and gestational age (average deviation 1.76 ± 1.65, median 1.5 days). Where available, the pathohistological examination and vaccination status of the placenta was included in the analysis. In prenatal MRI, the shape and thickness of the placenta, possible lobulation, and vascular lesions were quantified. Fetuses were scanned for organ or brain abnormalities. Findings: Of the 38 included cases after SARS-CoV-2 infection, 20/38 (52.6%) were infected with pre-Omicron variants and 18/38 (47.4%) with Omicron. Prenatal MRIs were performed on an average of 83 days (±42.9, median 80) days after the first positive PCR test. Both pre-Omicron (P = .008) and Omicron (P = .016) groups showed abnormalities in form of a globular placenta compared to control cases. In addition, placentas in the pre-Omicron group were significantly thickened (6.35, 95% CI .02-12.65, P = .048), and showed significantly more frequent lobules (P = .046), and hemorrhages (P = .002). Fetal growth restriction (FGR) was observed in 25% (n = 5/20, P = .017) in the pre-Omicron group. Interpretation: SARS-CoV-2 infections in pregnancy can lead to placental lesions based on vascular events, which can be well visualized on prenatal MRI. Pre-Omicron variants cause greater damage than Omicron sub-lineages in this regard. Funding: Vienna Science and Technology Fund.

8.
Eur J Paediatr Neurol ; 35: 67-73, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34653829

RESUMO

In this study we compare temporal lobe (TL) signal intensity (SI) profiles, along with the average thicknesses of the transient zones obtained from postmortem MRI (pMRI) scans and corresponding histological slices, to the frontal lobe (FL) SI and zone thicknesses, in normal fetal brains. The purpose was to assess the synchronization of the corticogenetic processes in different brain lobes. Nine postmortem human fetal brains without cerebral pathologies, from 19 to 24 weeks of gestation (GW) were analyzed on T2-weighted 3T pMRI, at the coronal level of the thalamus and basal ganglia. The SI profiles of the transient zones in the TL correlate well spatially and temporally to the signal intensity profile of the FL. During the examined period, in the TL, the intermediate and subventricular zone are about the size of the subplate zone (SP), while the superficial SP demonstrates the highest signal intensity. The correlation of the SI profiles and the distributions of the transient zones in the two brain lobes, indicates a time-aligned histogenesis during this narrow time window. The 3TpMRI enables an assessment of the regularity of lamination patterns in the fetal telencephalic wall, upon comparative evaluation of sizes of the transient developmental zones and the SI profiles of different cortical regions. A knowledge of normal vs. abnormal transient lamination patterns and the SI profiles is a prerequisite for further advancement of the MR diagnostic tools needed for early detection of developmental brain pathologies prenatally, especially mild white matter injuries such as lesions of TL due to prenatal cytomegalovirus infections, or cortical malformations.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Autopsia , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Gravidez
9.
Cereb Cortex ; 31(7): 3536-3550, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33704445

RESUMO

The purpose of the study was to investigate the interrelation of the signal intensities and thicknesses of the transient developmental zones in the cingulate and neocortical telencephalic wall, using T2-weighted 3 T-magnetic resonance imaging (MRI) and histological scans from the same brain hemisphere. The study encompassed 24 postmortem fetal brains (15-35 postconceptional weeks, PCW). The measurements were performed using Fiji and NDP.view2. We found that T2w MR signal-intensity curves show a specific regional and developmental stage profile already at 15 PCW. The MRI-histological correlation reveals that the subventricular-intermediate zone (SVZ-IZ) contributes the most to the regional differences in the MRI-profile and zone thicknesses, growing by a factor of 2.01 in the cingulate, and 1.78 in the neocortical wall. The interrelations of zone or wall thicknesses, obtained by both methods, disclose a different rate and extent of shrinkage per region (highest in neocortical subplate and SVZ-IZ) and stage (highest in the early second half of fetal development), distorting the zones' proportion in histological sections. This intrasubject, slice-matched, 3 T correlative MRI-histological study provides important information about regional development of the cortical wall, critical for the design of MRI criteria for prenatal brain monitoring and early detection of cortical or other brain pathologies in human fetuses.


Assuntos
Feto/embriologia , Lobo Límbico/embriologia , Neocórtex/embriologia , Telencéfalo/embriologia , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Encéfalo/patologia , Feto/diagnóstico por imagem , Feto/patologia , Idade Gestacional , Humanos , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/embriologia , Ventrículos Laterais/patologia , Lobo Límbico/diagnóstico por imagem , Lobo Límbico/patologia , Imageamento por Ressonância Magnética , Neocórtex/diagnóstico por imagem , Neocórtex/patologia , Tamanho do Órgão , Telencéfalo/diagnóstico por imagem , Telencéfalo/patologia
10.
Cereb Cortex ; 30(9): 5038-5048, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32377685

RESUMO

The subplate (SP) is a transient structure of the human fetal brain that becomes the most prominent layer of the developing pallium during the late second trimester. It is important in the formation of thalamocortical and cortico-cortical connections. The SP is vulnerable in perinatal brain injury and may play a role in complex neurodevelopmental disorders, such as schizophrenia and autism. Nine postmortem fetal human brains (19-24 GW) were imaged on a 3 Tesla MR scanner and the T2-w images in the frontal and temporal lobes were compared, in each case, with the histological slices of the same brain. The brains were confirmed to be without any brain pathology. The purpose of this study was to demonstrate that the superficial SP (sSP) and deep SP (dSP) can be discriminated on postmortem MR images. More specifically, we aimed to clarify that the observable, thin, hyperintense layer below the cortical plate in the upper SP portion on T2-weighted MR images has an anatomical correspondence to the histologically established sSP. Therefore, the distinction between the sSP and dSP layers, using clinically available MR imaging methodology, is possible in postmortem MRI and can help in the imaging interpretation of the fetal cerebral layers.


Assuntos
Encéfalo/embriologia , Feto/embriologia , Autopsia , Humanos , Imageamento por Ressonância Magnética/métodos
11.
Neuroimage ; 210: 116553, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972277

RESUMO

The periventricular crossroads have been described as transient structures of the fetal brain where major systems of developing fibers intersect. The triangular parietal crossroad constitutes one major crossroad region. By combining in vivo and post-mortem fetal MRI with histological and immunohistochemical methods, we aimed to characterize these structures. Data from 529 in vivo and 66 post-mortem MRI examinations of fetal brains between gestational weeks (GW) 18-39 were retrospectively reviewed. In each fetus, the area adjacent to the trigone of the lateral ventricles at the exit of the posterior limb of the internal capsule (PLIC) was assessed with respect to signal intensity, size, and shape on T2-weighted images. In addition, by using in vivo diffusion tensor imaging (DTI), the main fiber pathways that intersect in these areas were identified. In order to explain the in vivo features of the parietal crossroads (signal intensity and developmental profile), we analyzed 23 post-mortem fetal human brains, between 16 and â€‹40 GW of age, processed by histological and immunohistochemical methods. The parietal crossroads were triangular-shaped areas with the base in the continuity of the PLIC, adjacent to the germinal matrix and the trigone of the lateral ventricles, with the tip pointing toward the subplate. These areas appeared hyperintense to the subplate, and corresponded to a convergence zone of the developing external capsule, the PLIC, and the fronto-occipital association fibers. They were best detected between GW 25-26, and, at term, they became isointense to the adjacent structures. The immunohistochemical results showed a distinct cellular, fibrillar, and extracellular matrix arrangement in the parietal crossroads, depending on the stage of development, which influenced the MRI features. The parietal crossroads are transient, but important structures in white matter maturation and their damage may be indicative of a poor prognosis for a fetus with regard to neurological development. In addition, impairment of this region may explain the complex neurodevelopmental deficits in preterm infants with periventricular hypoxic/ischemic or inflammatory lesions.


Assuntos
Imageamento por Ressonância Magnética/métodos , Vias Neurais , Neuroimagem/métodos , Diagnóstico Pré-Natal/métodos , Telencéfalo , Substância Branca , Autopsia , Imagem de Tensor de Difusão/métodos , Feminino , Feto , Idade Gestacional , Humanos , Imuno-Histoquímica , Cápsula Interna/anatomia & histologia , Cápsula Interna/diagnóstico por imagem , Cápsula Interna/enzimologia , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/embriologia , Gravidez , Telencéfalo/anatomia & histologia , Telencéfalo/diagnóstico por imagem , Telencéfalo/embriologia , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/embriologia
12.
Eur Radiol ; 29(4): 2127-2136, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30315420

RESUMO

OBJECTIVES: To evaluate the feasibility and reproducibility of superb microvascular imaging (SMI) of the neonatal brain and to describe normal imaging features. METHODS: We performed transcranial ultrasound with SMI in 19 healthy term-born neonates. SMI was done according to a structured examination protocol, using two linear 18 MHz and 14 MHz transducers. Superficial and deep scans were acquired in the coronal and sagittal planes, using the left and right superior frontal gyri as anatomical landmarks. All SMI views were imaged by monochrome and colour SMI and evaluated with respect to visibility of extrastriatal (i.e. cortical and medullary) and striatal microvessels. RESULTS: We have described normal morphologic features of intraparenchymal brain microvasculature as "short parallel" cortical vessels, "smoothly curved" medullary vessels, and deep striatal vessels. In general, SMI performance was better on coronal views than on sagittal views. On superficial coronal scans, cortical microvessels were identifiable in 90-100%, medullary microvessels in 95-100%. On deep scans, cortical and medullary microvessels were visible in all cases, while striatal microvessels were identifiable in 71% of cases. CONCLUSIONS: Cerebral SMI ultrasound is feasible and well-reproducible and provides a novel non-invasive imaging tool for the assessment of intraparenchymal brain microvasculature (extrastriatal and striatal microvessels) in neonates without the use of contrast. KEY POINTS: • Superb microvascular imaging (SMI) of the neonatal brain is feasible and reproducible. • SMI depicts extrastriatal and striatal microvessels. • SMI detects two types of extrastriatal microvessels: cortical and medullary.


Assuntos
Artérias Cerebrais/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Ultrassonografia Doppler Transcraniana/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
13.
Brain Lang ; 174: 9-15, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28709112

RESUMO

Situs inversus totalis is a rare condition where the visceral organs are organized as a mirror image of default organ position. In this study we picture the co-development between brain and visceral organs in a case of situs inversus totalis from a fetal stage to adolescence and compare our findings to an age-, gender-, and education-matched control with normal position of thoracic and abdominal organs. We show that in this case of situs inversus, functional and structural brain lateralization do not coincide with visceral organ situs. Furthermore, cognitive development in situs inversus is normal. To our knowledge, this is the first report of antenatal cerebral origins of structural and functional brain asymmetry in a case of situs inversus totalis.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Lateralidade Funcional , Idioma , Situs Inversus/fisiopatologia , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Cognição/fisiologia , Alemanha , Humanos , Lactente , Recém-Nascido , Masculino
15.
Sci Rep ; 7: 43477, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262719

RESUMO

One major hallmark of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) is the deposition of extracellular senile plaques and vessel wall deposits composed of amyloid-beta (Aß). In AD, degeneration of neurons is preceded by the formation of Aß plaques, which show different morphological forms. Most of them are birefringent owing to the parallel arrangement of amyloid fibrils. Here, we present polarization sensitive optical coherence microscopy (PS-OCM) for imaging mature neuritic Aß plaques based on their birefringent properties. Formalin-fixed, post-mortem brain samples of advanced stage AD patients were investigated. In several cortical brain regions, neuritic Aß plaques were successfully visualized in tomographic and three-dimensional (3D) images. Cortical grey matter appeared polarization preserving, whereas neuritic plaques caused increased phase retardation. Consistent with the results from PS-OCM imaging, the 3D structure of senile Aß plaques was computationally modelled for different illumination settings and plaque sizes. Furthermore, the birefringent properties of cortical and meningeal vessel walls in CAA were investigated in selected samples. Significantly increased birefringence was found in smaller vessels. Overall, these results provide evidence that PS-OCM is able to assess amyloidosis based on intrinsic birefringent properties.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Meninges/diagnóstico por imagem , Microscopia de Polarização/métodos , Placa Amiloide/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Doença de Alzheimer/patologia , Autopsia , Birrefringência , Angiopatia Amiloide Cerebral/patologia , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Polarização de Fluorescência , Formaldeído , Humanos , Imageamento Tridimensional/estatística & dados numéricos , Meninges/patologia , Meninges/ultraestrutura , Microscopia de Polarização/instrumentação , Placa Amiloide/patologia , Placa Amiloide/ultraestrutura , Fixação de Tecidos/métodos , Tomografia de Coerência Óptica/instrumentação
16.
Semin Ultrasound CT MR ; 36(6): 465-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26614130

RESUMO

The recent technological advancement of fast magnetic resonance imaging (MRI) sequences allowed the inclusion of diffusion tensor imaging, functional MRI, and proton MR spectroscopy in prenatal imaging protocols. These methods provide information beyond morphology and hold the key to improving several fields of human neuroscience and clinical diagnostics. Our review introduces the fundamental works that enabled these imaging techniques, and also highlights the most recent contributions to this emerging field of prenatal diagnostics, such as the structural and functional connectomic approach. We introduce the advanced image processing approaches that are extensively used to tackle fetal or maternal movement-related image artifacts, and which are necessary for the optimal interpretation of such imaging data.


Assuntos
Encefalopatias/diagnóstico , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Doenças Fetais/diagnóstico , Diagnóstico Pré-Natal/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Biomarcadores/metabolismo , Encefalopatias/embriologia , Encefalopatias/metabolismo , Feminino , Doenças Fetais/metabolismo , Humanos , Aumento da Imagem/métodos , Masculino , Imagem Molecular/métodos
17.
Neuroimage ; 111: 277-88, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25725467

RESUMO

Agenesis of the corpus callosum is a model disease for disrupted connectivity of the human brain, in which the pathological formation of interhemispheric fibers results in subtle to severe cognitive deficits. Postnatal studies suggest that the characteristic abnormal pathways in this pathology are compensatory structures that emerge via neural plasticity. We challenge this hypothesis and assume a globally different network organization of the structural interconnections already in the fetal acallosal brain. Twenty fetuses with isolated corpus callosum agenesis with or without associated malformations were enrolled and fiber connectivity among 90 brain regions was assessed using in utero diffusion tensor imaging and streamline tractography. Macroscopic scale connectomes were compared to 20 gestational age-matched normally developing fetuses with multiple granularity of network analysis. Gradually increasing connectivity strength and tract diffusion anisotropy during gestation were dominant in antero-posteriorly running paramedian and antero-laterally running aberrant pathways, and in short-range connections in the temporoparietal regions. In fetuses with associated abnormalities, more diffuse reduction of cortico-cortical and cortico-subcortical connectivity was observed than in cases with isolated callosal agenesis. The global organization of anatomical networks consisted of less segregated nodes in acallosal brains, and hubs of dense connectivity, such as the thalamus and cingulate cortex, showed reduced network centrality. Acallosal fetal brains show a globally altered connectivity network structure compared to normals. Besides the previously described Probst and sigmoid bundles, we revealed a prenatally differently organized macroconnectome, dominated by increased connectivity. These findings provide evidence that abnormal pathways are already present during at early stages of fetal brain development in the majority of cerebral white matter.


Assuntos
Agenesia do Corpo Caloso/patologia , Encéfalo/patologia , Conectoma , Imagem de Tensor de Difusão/métodos , Desenvolvimento Fetal , Rede Nervosa/patologia , Agenesia do Corpo Caloso/embriologia , Encéfalo/embriologia , Feminino , Doenças Fetais/patologia , Idade Gestacional , Humanos , Rede Nervosa/embriologia , Gravidez , Diagnóstico Pré-Natal
18.
PLoS One ; 10(3): e0119536, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742520

RESUMO

Association fibers connect different cortical areas within the same hemisphere and constitute an essential anatomical substrate for a diverse range of higher cognitive functions. So far a comprehensive description of the prenatal in vivo morphology of these functionally important pathways is lacking. In the present study, diffusion tensor imaging (DTI) and tractography were used to visualize major association fiber tracts and the fornix in utero in preselected non-motion degraded DTI datasets of 24 living unsedated fetuses between 20 and 34 gestational weeks (GW). The uncinate fasciculus and inferior fronto-occipital fasciculus were depicted as early as 20 GW, while in vivo 3D visualization of the inferior longitudinal fasciculus, cingulum and fornix was successful in older fetuses during the third trimester. Provided optimal scanning conditions, in utero DTI and tractography have the potential to provide a more accurate anatomical definition of developing neuronal networks in the human fetal brain. Knowledge about the normal prenatal 3D association tract morphology may serve as reference for their assessment in common developmental diseases.


Assuntos
Encéfalo/embriologia , Imagem de Tensor de Difusão/métodos , Imageamento Tridimensional/métodos , Vias Neurais/anatomia & histologia , Encéfalo/anatomia & histologia , Feminino , Humanos , Vias Neurais/embriologia , Gravidez , Terceiro Trimestre da Gravidez , Estudos Retrospectivos
19.
Front Neuroanat ; 9: 164, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26732460

RESUMO

Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in utero DTI as a clinical imaging tool, an independent comparison between macroscopic imaging and microscopic histology data in the same subject is needed. The present study aimed to cross-validate normal as well as abnormal in utero tractography results of commissural and internal capsule fibers in human fetal brains using postmortem histological structure tensor (ST) analysis. In utero tractography findings from two structurally unremarkable and five abnormal fetal brains were compared to the results of postmortem ST analysis applied to digitalized whole hemisphere sections of the same subjects. An approach to perform ST-based deterministic tractography in histological sections was implemented to overcome limitations in correlating in utero tractography to postmortem histology data. ST analysis and histology-based tractography of fetal brain sections enabled the direct assessment of the anisotropic organization and main fiber orientation of fetal telencephalic layers on a micro- and macroscopic scale, and validated in utero tractography results of corpus callosum and internal capsule fiber tracts. Cross-validation of abnormal in utero tractography results could be achieved in four subjects with agenesis of the corpus callosum (ACC) and in two cases with malformations of internal capsule fibers. In addition, potential limitations of current DTI-based in utero tractography could be demonstrated in several brain regions. Combining the three-dimensional nature of DTI-based in utero tractography with the microscopic resolution provided by histological ST analysis may ultimately facilitate a more complete morphologic characterization of axon guidance disorders at prenatal stages of human brain development.

20.
Brain ; 136(Pt 1): 168-79, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23365096

RESUMO

Complete or partial agenesis of the corpus callosum are rather common developmental abnormalities, resulting in a wide spectrum of clinical neurodevelopmental deficits. Currently, a significant number of these cases are detected by prenatal sonography during second trimester screening examinations. However, major uncertainties about a detailed morphological diagnosis and the clinical significance do not allow accurate prenatal counselling. Here, we were able to demonstrate the 3D connectivity of aberrant commissural tracts in 16 cases with complete and four cases with partial callosal agenesis using the foetal magnetic resonance imaging techniques of diffusion tensor imaging and tractography in utero and in vivo between gestational weeks 20 and 37. The 'misguided' pre-myelinated callosal axons that represent the bundle of Probst were non-invasively visualized, and they showed a degree of structural integrity similar to that of the callosal pathways of age-matched foetuses without cerebral pathologies. In two foetuses, we were able to prove, by post-mortem histology, that diffusion tensor imaging allows the depiction of the bundle of Probst, even during early stages of pre-myelination at 20 and 22 gestational weeks. In cases with partial callosal agenesis, an aberrant sigmoid-shaped bundle was prenatally depicted, confirming the findings of heterotopic interhemispheric connectivity in adults with partial callosal agenesis. In addition to the corpus callosum, other white matter pathways were also involved, including somatosensory and motor pathways that showed significantly higher fractional anisotropy values in cases with callosal agenesis compared with control subjects. A detailed prenatal assessment of abnormal white matter connectivity in cases of midline anomalies will help to explain and understand the clinical heterogeneity in these cases, taking future foetal neurological counselling strategies to a new level.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Axônios/diagnóstico por imagem , Fibras Nervosas Mielinizadas/diagnóstico por imagem , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/patologia , Axônios/patologia , Imagem de Tensor de Difusão , Feminino , Humanos , Fibras Nervosas Mielinizadas/patologia , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Diagnóstico Pré-Natal , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...